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The thermoelectric properties of strongly correlated quantum dots, described by a single-level Anderson
model coupled to conduction-electron leads, is investigated using Wilson’s numerical renormalization-group
method. We calculate the electronic contribution, Ke, to the thermal conductance, the thermopower, S, and the
electrical conductance, G, of a quantum dot as a function of both temperature, T, and gate voltage, vg, for
strong, intermediate, and weak Coulomb correlations, U, on the dot. For strong correlations and in the Kondo
regime, we find that the thermopower exhibits two sign changes, at temperatures T1�vg� and T2�vg� with T1

�T2. We find that T1�Tp�vg��TK�vg�, where Tp�vg� is the position of the Kondo-induced peak in the
thermopower, TK�vg� is the Kondo scale, and T2=O���, where � is the level width. The loci of T1�vg� and
T2�vg� merge at a critical gate voltage, vg=vg

c�U /�� beyond which no sign change occurs at finite gate voltage
�measured relative to midvalley�. We determine vg

c for different U /� finding that vg
c coincides, in each case,

with entry into the mixed-valence regime. No sign change is found outside the Kondo regime, or, for weak
correlations U /��1, making such a sign change in S�T� a particularly sensitive signature of strong correla-
tions and Kondo physics. The relevance of this to recent thermopower measurements of Kondo correlated
quantum dots is discussed. The results for quantum dots are compared also to the relevant transport coefficients
of dilute magnetic impurities in nonmagnetic metals: the electronic contribution, �e, to the thermal conductiv-
ity, the thermopower, S, and the impurity contribution to the electrical resistivity, �. In the mixed-valence and
empty-orbital regimes, we find, as a function of temperature, two peaks in Ke as compared to a single peak in
�e, and similarly, G�T� exhibits a finite-temperature peak on entering the mixed-valence regime whereas such
a pronounced peak is absent in ��T� even far into the empty-orbital regime. We compare and contrast the figure
of merit, power factor, and the extent of violation of the Wiedemann-Franz law in quantum dots and dilute
magnetic impurities. The extent of temperature scaling in the thermopower and thermal conductance of quan-
tum dots in the Kondo regime is discussed.
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I. INTRODUCTION

Materials with potentially useful thermoelectric properties
are currently under intense theoretical and experimental in-
vestigation, mainly due to the prospect of applications, e.g.,
for conversion of waste heat into electricity in thermoelectric
generators, for applications to refrigeration or for on-chip
cooling and energy efficiency in microelectronics
applications.1–14 Apart from possible applications, thermo-
electric materials can also serve as an interesting testing
ground for theoretical approaches to electrical and thermal
transport in solids.15–19 As the scale of the individual com-
ponents in semiconducting devices is approaching the nano-
size, a description of thermal transport through quantum dots
is also attracting a lot of experimental and theoretical
attention.20–22

In this paper, we address the thermoelectric properties of a
nanoscale size quantum dot exhibiting the Kondo effect,
which we describe in terms of a single-level Anderson im-
purity model with two conduction-electron leads at fixed
chemical potentials. The quantum dots that we consider have
sizes of 10–100 nm and can be tuned from the Kondo to the
mixed-valence and empty-orbital regimes by a gate
voltage.23–26 Short segments of carbon nanotubes27 con-
nected to leads exhibit similar physics so our results could
also be of relevance to such systems. Very recent experi-
ments on nanoscale quantum dots20,28 are beginning to probe

the effect of Kondo correlations on the thermopower, al-
though as we shall argue in the conclusions a quantitative
comparison with theory is still some way off. The thermo-
electric properties of dilute magnetic impurities in nonmag-
netic metals, such as CexLa1−xAl3 and CexLa1−xB6, are
closely related to those of quantum dots �see Sec. II� so we
discuss these here also. Understanding the thermoelectric
properties of magnetic impurities is also a useful starting
point for understanding those of heavy fermions within the
dynamical mean-field theory approach19 although, in these
systems, crystal-field effects and nonresonant channels play a
crucial role for the thermopower, and need to be taken into
account for a quantitative comparison to experiment.16–18

The approach that we use in this paper, Wilson’s numeri-
cal renormalization-group �NRG� method,29–31 gives reliable
results for transport properties in all parameter and tempera-
ture regimes of interest.15 The present calculations were car-
ried out for the Anderson model with finite Coulomb repul-
sion, as is appropriate for nanoscale size quantum dots. We
implemented recent developments in the calculation of dy-
namical quantities within the NRG, including the use of the
self-energy32 and the full density-matrix �FDM�
generalization33 �see also Refs. 34 and 35� of the reduced
density-matrix approach36 within the complete basis set of
eliminated states.37 In particular, the FDM approach allows
calculations of dynamical properties at all excitation energies
� relative to the temperature T, thereby simplifying the cal-
culation of transport properties which require knowledge of

PHYSICAL REVIEW B 81, 235127 �2010�

1098-0121/2010/81�23�/235127�18� ©2010 The American Physical Society235127-1

http://dx.doi.org/10.1103/PhysRevB.81.235127


excitations, �, above and below the temperature.15

The outline of the paper is as follows. In Secs. II and III,
we describe the Anderson impurity model for quantum dots
and dilute magnetic impurities and we specify the relevant
transport quantities that we calculate for these two different
physical realizations of the model. The NRG method used in
this paper is described in Sec. IV together with results for
occupancies which we use to define Kondo, mixed-valence,
and empty-orbital regimes in the strong correlation limit.
Section V presents the temperature-dependent transport
properties of quantum dots and Sec. VI compares these to the
corresponding quantities for dilute magnetic impurities. Re-
sults for the figure of merit, power factor, and Lorenz num-
ber ratios for quantum dot and magnetic impurity systems
are presented in Sec. VII. Section VIII investigates the extent
to which universal scaling functions apply to the ther-
mopower and thermal conductance of quantum dots in the
Kondo regime. In Sec. IX, we present our results for the
gate-voltage �local level� dependence of transport quantities
for quantum dots �magnetic impurities�. Conclusions and a
discussion of the relevance of our results to recent experi-
ments on nanoscale size quantum dots is presented in Sec. X.
Appendix A discusses the reduction of the two-lead Ander-
son model to a single-channel model, Appendix B contains
some additional results for moderately and weakly correlated
quantum dots, and Appendix C provides details of the FDM
approach33 and an alternative detailed derivation of the FDM
expression for local Green’s functions, which we have used
to obtain the results in this paper. Finally Appendix D gives
an outline of the derivation of thermopower and thermal con-
ductance for quantum dots.

II. MODEL

A nanoscale quantum dot is described by the single-level
Anderson impurity model with two conduction-electron
leads,

H = �
�k	


�k	c�k	
† c�k	 + �

	

�dd	
†d	 + Und↑nd↓

+ �
�k	

t��c�k	
† d	 + H.c.� . �1�

Here, 
�k	 is the kinetic energy of conduction electrons with
wave number k and spin 	 in lead �= �L ,R�, �d is the local
level energy, U is the Coulomb repulsion on the dot, and t� is
the tunnel matrix element of the dot level to conduction-
electron states in lead �= �L ,R�. The operators c�k	

† �c�k	�
create �destroy� conduction-electron states ��k	� and d	

†�d	�
create �destroy� local d-level states �	�. We assume a flat
density of states of magnitude NF=1 /2D per spin channel
for both leads, where D=1 is the half bandwidth of each
lead. The single-particle broadening �half width at half maxi-

mum� of the d level is given by �̃= �̃L+ �̃R, where �̃L,R
=�NFtL,R

2 are the contributions to the broadening from the
left and right leads. In this paper, we follow the convention

used in quantum dot work and use as unit of energy not �̃ but

the full width at half maximum �=2�̃.

Since the d state of the quantum dot in Eq. �1� only
couples to the even combination aek	� tLcLk	+ tRcRk	 of the
lead electron states, one can show �see Appendix A� that, to
a very good approximation, the above model can be reduced
to the following single-channel Anderson model:

H = �
k	


ek	aek	
† aek	 + �

	

�dd	
†d	 + Und↑nd↓

+ t�
k	

�aek	
† d	 + H.c.� , �2�

where the tunneling amplitude t is given by t2= tL
2 + tR

2 so that
the hybridization strength of the dot to the leads is given by

�̃= �̃L+ �̃R. This is also the appropriate model for describing
dilute magnetic impurities in nonmagnetic metals.15 In fact,
for both systems �see below and Appendix A�, the calcula-
tion of the linear transport properties reduces to the calcula-
tion of the equilibrium d-level spectral density of the single-
channel model,

A��� = −
1

�
Im�Gd	�� + i�	 , �3�

where Gd	��+ i�= 

d	 ;d	
†�� is the Fourier transform of the

retarded d-level Green’s function of Eq. �2�. Hence, all re-
sults in this paper, including those for dilute magnetic impu-
rities, are obtained by solving the single-channel model �2�
using the NRG �as explained in Sec. IV� to obtain A�� ,T�.

III. TRANSPORT QUANTITIES

A. Quantum dots

Thermoelectric transport through the quantum dot �Eq.
�1�	 is calculated for a steady-state situation in which a small
external bias voltage, V=VL−VR, and a small temperature
gradient T is applied between the left and right leads. Left
and right leads are then at different chemical potentials �L
and �R, and temperatures TL and TR, with eV=�L−�R and
T=TL−TR. We follow the approach for deriving the electri-
cal conductance, G�T�, the thermal conductance, Ke�T�, and
thermoelectric power, S�T�, through an interacting quantum
dot38–40 using the nonequilibrium Green’s-function formal-
ism. For completeness, an outline of this derivation21,22 can
be found in Appendix D. The final expressions are given by

G�T� = e2I0�T� , �4�

S�T� = −
1

�e�T
I1�T�
I0�T�

, �5�

Ke�T� =
1

T
�I2�T� −

I1
2�T�

I0�T�� , �6�

where In ,n=0,1 ,2 are the transport integrals

In�T� =
2

h
 d� �nT����−

� f

��
� . �7�

Here, e denotes the magnitude of the electronic charge and h
denotes Planck’s constant. The quantity T��� is related to the
spectral density A��� via
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T��� = 4�
�̃L�̃R

�̃L + �̃R

A��� . �8�

At T=0, the conductance acquires the value

G�0� =
2e2

h
T�0� �9�

=
2e2

h

4�̃L�̃R

��̃L + �̃R�2
sin2��nd/2� ,

�10�

where nd is the occupancy of the dot and we have used the
Friedel sum rule,

A�� = 0,T = 0� =
1

���̃L + �̃R�
sin2��nd/2� .

For integer occupation, nd=1, and equal coupling to the

leads, �̃L= �̃R, the conductance reaches the unitary value
2e2 /h, which we henceforth denote by G0.

B. Dilute magnetic impurities

It is of interest to compare the transport properties of a
quantum dot, with the corresponding quantities for electrons
scattering from a dilute concentration, ni�1, of magnetic
impurities in a clean host metal with constant density of
states NF per spin. As for quantum dots, the relevant model
for such dilute magnetic impurities is the single-channel

Anderson model �2� with hybridization strength �̃. In order
to obtain the thermopower, S�T�, the thermal conductivity,
�e�T�, and resistivity, ��T� �or conductivity 	=1 /�� for such
a dilute concentration of magnetic impurities we use the
Kubo formalism, see Appendix A of Ref. 15 for the details,
and find for these quantities,

��T� =
1

e2M0�T�
, �11�

S�T� = −
1

�e�T
M1�T�
M0�T�

, �12�

�e�T� =
1

T
�M2�T� −

M1
2�T�

M0�T�� . �13�

The transport integrals Mn ,n=0,1 ,2, appearing here, are
now defined by

Mn�T� = d� �n���,T��−
� f

��
� , �14�

where ��� ,T� is the transport time of electrons, which is
given in terms of the impurity spectral density A�� ,T� by

1

���,T�
=

ni

NF
2�̃A��,T� . �15�

In order to compare impurity transport properties with those
of quantum dots, using the same units, we shall use rescaled

quantities, e.g., for quantum dots G /G0 and Ke /G0 and for
impurities � /�0 and �e�0 where

�0 = 2ni/�NFe2 �16�

is the unitary resistivity of electrons scattering from a dilute
concentration ni of magnetic impurities.

While the physics governing the transport properties of
electrons scattering from dilute magnetic impurities, de-
scribed by Eq. �2�, is expected to be similar to that governing
the transport properties of electrons through quantum dots
�also described by Eq. �2�	, differences are also expected,
particularly for the respective thermopowers or the thermal
conductance �conductivity�, for the following reason: the
transport expressions for quantum dots arise from integrals
In ,n=0,1 ,2 which involve the nth moments of A�� ,T� con-
voluted with the derivative of a Fermi function whereas
those for magnetic impurities arise from nth moments of
1 /A�� ,T� convoluted with the same derivative. At low tem-
peratures, a Sommerfeld expansion for I1 and M1 results in
different signs for the thermopower in the two different situ-
ations since derivatives of A and 1 /A have opposite signs.
On the other hand, at higher temperatures, moments of A and
1 /A are determining factors for transport. Particularly the
moments I1 �M1�, entering the thermopower, and I2�M2�, en-
tering the thermal conductance �conductivity�, probe differ-
ences in the behavior or A�� ,T� and 1 /A�� ,T� at high tem-
perature. Consequently we expect significant quantitative
differences for the thermopower and thermal conductance
�conductivity� of quantum dots and dilute magnetic impuri-
ties at high temperatures. We discuss these differences in
Sec. VI.

IV. NRG APPROACH

A. NRG and dynamical quantities

We calculate the spectral function A�� ,T� and the trans-
port properties of quantum dots, by using the NRG
approach.29–31 This method is numerically exact and can be
used to calculate both static thermodynamic properties as
well as finite-temperature dynamic and transport
properties.15 In brief, the NRG procedure29,30 consists of the
following steps, �i�, a logarithmic mesh of �k

n=D�−n is intro-
duced about the Fermi level �F=0, and, �ii�, a unitary trans-
formation of the aek	 in Eq. �2� is performed such that f0	

=�kaek	 is the first operator in a new basis, fn	 ,n=0,1 , . . .,
which tridiagonalizes Hc=�k	
ek	aek	

† aek	, i.e., Hc
→�	�n=0

� tn�fn+1	
† fn	+H.c.�, where the hoppings tn��−n/2

for a flat conduction band.30 The Hamiltonian �2� with the
above discretized form of the kinetic energy is now itera-
tively diagonalized by defining a sequence of finite-size
Hamiltonians,

Hm = �
	

�dd	
†d	 + Und↑nd↓ + t�

	

�f0	
† d	 + H.c.�

+ �
n=0,	

m−1

tn�fn+1	
† fn	 + H.c.� �17�

for m�0 up to a maximum chain length N. For each m, this
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yields the excitations Ep
m and many-body eigenstates �pm� of

Hm at a corresponding set of energy scales �m defined by the
smallest scale in Hm, �m= tm��−�m−1�/2. Since the number of
states grows as 4m, for m�6 only the lowest 600 or so states
of Hm are retained. These are used as a basis for constructing
Hm+1. For m�6, both the retained and eliminated �high-
energy� states of Hm, together with the corresponding eigen-
values, are stored. This information is subsequently used to
evaluate the spectral function A�� ,T� within the FDM
approach33 described in Appendix C. This evaluation makes
use of, �i�, the completeness of eliminated states,37 allowing
a multiple-shell evaluation of Green’s functions,41 avoiding
double counting of excitations, and, �ii�, the reduced density-
matrix approach to Green’s functions, introduced to the NRG
by Hofstetter.36 In addition, we calculate the spectral func-
tion via the correlation part of the self-energy ��� ,T� fol-
lowing Bulla et al.,32 via

A��,T� = −
1

�
Im� 1

� − 
d + i� − ���,T�� ,

���,T� = U


nd,−	d	;d	

†��


d	;d	

†��
� U

F	��,T�
Gd	��,T�

. �18�

Since the FDM entering the definition of the Green’s
functions, see Appendix C, contains the complete spectrum
from all NRG iterations, asymptotically high and low tem-
peratures can be investigated more easily than within previ-
ous approaches,15 which involved at a given temperature T,
choosing an appropriate energy shell to extract A�� ,T�. In
addition, the regime ��T, which was problematical in pre-
vious approaches, can now be addressed, since contributions
from all excitations �for all energy shells� are taken into ac-
count in the expression for the Green’s function within the
FDM approach.

B. Calculations

The calculations reported here have been carried out for a
discretization parameter �=1.75, retaining 660 states per

NRG iteration and a hybridization strength �̃=0.01 �in units
of the half bandwidth D=1�. The maximum chain length

diagonalized was N=68. We use the full width �=2�̃=0.02
as our energy unit throughout. Results for a wide range of
temperatures from T /��1 to T /��1 were obtained to fully
characterize the transport properties of quantum dots and di-
lute magnetic impurities. We note that, in practice, the re-
gime T /��1 is probably not accessible in experiment due to
other effects which become important at high temperature,
and which we do not take into account, e.g., phonons, mul-
tiple levels, crystal-field states, etc. Calculations for strong
�U /�=8,6�, moderate �U /�=3�, and weak �U /�=1� corre-
lations were carried out for a range of dimensionless gate
voltages, vg, defined by

vg =
�d + U/2

�
= 0.25n, n = � 1, � 2, . . . , � 32.

With this definition, the gate voltage for midvalley occurs at
vg=0 for all U. Due to particle-hole symmetry, calculations

were carried out for vg�0, with those for vg�0 being ob-
tained via a particle-hole transformation. This results in vg
→−vg, occupancy nd→1−nd, double occupancy D
= 
nd↑nd↓�→1−nd+D, thermopower S→−S, with G and Ke
remaining unchanged. The behavior of S, G, and Ke under
vg→−vg, follows from their definition and the behavior of
the spectral function, A�� ,T�→A�−� ,T� under vg→−vg.

Figure 1 shows the temperature dependence of the dot-
level occupancy, nd�T�, for gate voltages in the Kondo,
mixed-valence, and empty-orbital regimes, for U /�=8. For
U /��1, we use the occupancy at T=0 to delineate between
the different regimes. Specifically, the Kondo regime is de-
fined by gate voltages around midvalley �vg=0� with �nd�T
=0�−1��0.25 �see caption of Fig. 1�. Similarly, the mixed-
valence and empty-orbital regimes are defined by gate volt-
ages corresponding to �nd�T=0�−0.5��0.25 and nd�T=0�
�0.25, respectively �see Fig. 1�. In the Kondo regime, a
characteristic low-temperature scale, the Kondo scale TK, can
be defined via42

TK = U� �̃

2U
e�
d�
d+U�/2�̃U = �� ũ

4
e��vg

2−ũ2/4�/ũ, �19�

where ũ=U /�. The midvalley Kondo scales for ũ=3, 6, and
8, are TK /�=8.2�10−2, 1.0�10−2, and 2.64�10−3, respec-
tively.

Within the FDM approach, the thermodynamic value of
the dot occupancy nd=Tr��nd	, where � is the FDM defined
in Appendix C, and the value obtained from the spectral sum
rule nd=�	�−�

+�− 1
� Im�F	�� ,T�	d�, with F	 defined in Eq.

�18�, are identical by construction, as we also verified nu-
merically. Figure 2 shows the gate-voltage dependence of the
dot occupancy �and for completeness also the double occu-
pancy D= 
nd↑nd↓�� at a number of temperatures for the
strong correlation case U /�=8.

C. Physics of Kondo, mixed-valence, and empty-orbital
regimes

Before presenting the results, a few words are in order
concerning the physical significance of the Kondo, mixed-
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FIG. 1. �Color online� Temperature dependence of the occu-
pancy for different values of the gate voltages vg�0 in the Kondo
�solid lines�, mixed-valence �dashed lines�, and empty-orbital �dot-
ted lines� regimes. We define these regimes by �nd�T=0�−1�
�0.25, �nd�T=0�−0.50��0.25, and �nd�T=0���0.25, respectively.
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valence, and empty-orbital regimes for strong Coulomb cor-
relations �U /��1� on the dot �for more detailed information
we refer the reader to Ref. 42�. The Kondo regime, nd�1,
corresponds to the formation of a localized spin on the dot at
intermediate temperatures �TK�T���. In this temperature
range, physical properties exhibit logarithmic temperature
dependences, the hallmark of the Kondo effect. At T�TK,
the localized spin is quenched by the lead electrons, resulting
in a many-body singlet at T=0 and a narrow Kondo reso-
nance �of width TK� in the dot spectral density at the Fermi
level. Physical properties are characterized by spin fluctua-
tions on scales TK�T��, charge fluctuations on a scale T
��, and renormalized Fermi-liquid excitations at T�TK.
The dot spectral density is well understood:15 it has a three-
peaked structure, with single-particle charge excitations at �d
and �d+U and a temperature-dependent Kondo resonance at
the Fermi level. The mixed-valence regime, corresponds to

gate voltages such that the level �d is within �̃ of the Fermi
level. The charge on the dot fluctuates between nd=0 and
nd=1 resulting in an average charge nd�0.5. The physics is
governed by quantum-mechanical charge fluctuations on a

scale set by �̃. The empty-orbital regime, corresponds to nd
�0 and �d /��1. Physical properties are dominated by
charge fluctuations, primarily via thermal activation �with an
activation energy �d�. Even though U /��1, the physics in
this regime corresponds to that of a noninteracting resonant-

level model with a resonant level of width �̃ at energy �d
�0.

V. TEMPERATURE DEPENDENCE OF TRANSPORT
PROPERTIES OF QUANTUM DOTS

The temperature dependence of transport properties of a
quantum dot described by the model �1� is shown in Fig. 3
for several values of the gate voltage, ranging from the
Kondo regime �Figs. 3�a�, 3�d�, and 3�g�	, to the mixed-
valence �Figs. 3�b�, 3�e�, and 3�h�	 and empty orbital �Figs.
3�c�, 3�f�, and 3�i�	 regimes and for strong Coulomb correla-
tions on the dot �U /�=8�. Moderate to weak correlations are
described briefly in Sec. V D and Appendix B. Depending on
the regime, the transport properties exhibit different charac-

teristic temperature dependences, which we describe in detail
below for each transport property in turn. Here, and in sev-
eral other figures in the paper, we use arrows to indicate the
evolution, with increasing gate voltage vg�0 about midval-
ley �vg=0�, of the various transport properties.

A. Electrical conductance: G(T)

The general trends in the electrical conductance G�T� of
Kondo correlated quantum dots are well understood:15,43–47

in short, as T→0, the conductance approaches a maximum
value �see Fig. 3�a�	, indicating that the quantum dot appears
“transparent” to electrons tunneling through it, and a loga-
rithmic behavior around TK marks the crossover from the
weakly coupled regime at T�TK to the strongly coupled
regime at T�TK. An issue, less discussed in the literature,
which we point out here, is the appearance of a finite-
temperature peak in the conductance, G�T� /G0, on entering
the mixed-valence regime �see Fig. 3�b�	. This feature be-
comes particularly pronounced in the empty-orbital regime
�see Fig. 3�c�	. This effect has been observed in experiments
on lateral quantum dots23,26 and a comparison to theoretical
calculations shows good agreement48,49 �see also the discus-
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of presentation, as a function of T /�, in the strongly correlated
regime U /�=8 for a range of gate voltages, vg= ��d+U /2� /�, in
the Kondo �first column�, mixed-valence �second column�, and
empty-orbital �third column� regimes. The range of vg is indicated
in the top panels for each regime and the increment used was 0.25.
Arrows indicate the evolution of the transport quantities with in-
creasing vg. The inset of �d� compares the Kondo scale TK in the
Kondo regime with the peak position of the low-temperature peak,
Tp, in S below the first sign change at T1 as a function of vg�0. In
the Kondo regime TK�Tp and for gate voltages approaching the
mixed-valence regime, the two scales deviate, as expected. The in-
set for Ke in �g� and �h� shows the crossing point at T /��0.6 in
more detail �vertical dotted line� and the evolution of the two-
peaked structure for gate voltages approaching the mixed-valence
regime.
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sion of the resistivity of dilute magnetic impurities in Sec.
VI�.

B. Thermopower: S(T)

The thermopower exhibits a particularly interesting tem-
perature dependence in the Kondo regime, Fig. 3�d�, with
two sign changes at T=T1�vg� and T=T2�vg�, and, corre-
spondingly, three extrema at T=Tp, T�0.6�–0.8�, and T
�6�. The detailed behavior of T1 and T2 as a function of
gate voltage will be described below; here, it suffices to note
that neither T1 nor T2 are low-energy scales, and T2 is typi-
cally on a scale of order � �see Figs. 3�d� and 4�a� below	.
The low-temperature “Kondo” peak in S�T� at T=Tp is found
to scale with TK �as defined in Eq. �19�	, as shown in the
inset of Fig. 3�d�. Thus, in contrast to T1 and T2, Tp can be
considered a low-energy scale in the Kondo regime. The cen-
tral positive peak in S�T� first grows with positive magnitude
on moving away from the Kondo regime �Fig. 3�d�	 and then
decreases in magnitude in Fig. 3�e� on entering the mixed-
valence regime. Simultaneously, the Kondo peak in S�T� ac-
quires a large negative value while merging with the high-
energy �negative� peak at T�6� on entering the mixed-
valence regime �Fig. 3�e�	. Well into the mixed-valence
regime, the thermopower exhibits a single negative peak on a
scale � with a distinct shoulder at higher temperatures due to
the peak at T�6�. This picture continues to hold in the
empty-orbital regime �see Fig. 3�f�	, with the shoulder at T
�6� having almost disappeared. The thermopower remains
negative for all gate voltages vg�0 in this regime.

The above behavior in the temperature dependence of the
thermopower in the Kondo regime is explained in terms of
the structure of the single-particle excitations in A�� ,T�. At
low temperatures, a Sommerfeld expansion for S�T� gives15

S�T� = −
kB

�e�
�2

3
kBT� 1

A�0,T�
�A

��
�

�=0
, �20�

showing that the sign of the thermopower depends on the
slope of the spectral density at the Fermi level. For T�TK

and vg�0, the Kondo resonance lies above the Fermi level
so the slope of the spectral density at the Fermi level is
positive, resulting in a negative thermopower. This remains
true on further increasing the temperature but as shown in
Ref. 15, eventually the Kondo resonance is suppressed at T
�TK resulting in a negative slope of the spectral density at
�=0 for vg�0 �with the opposite being true for vg�0�.
Consequently, the thermopower changes sign at the tempera-
ture T1 which roughly corresponds to the temperature at
which the Kondo resonance vanishes. At T�TK, the deter-
mining factor for the sign of the thermopower is no longer
the slope of the spectral function at �=0 but the number of
states available below or above the Fermi level. These deter-
mine the overall sign of the transport integral I1 in the ex-
pression for the thermopower in Eq. �5�. For vg�0, there are
nd /2�0.5 states below the Fermi level and 1−nd /2�0.5
states above the Fermi level. Consequently, the integral of
−��f /����A�� ,T� for ��0 is greater than its counterpart
for ��0 so I1�0 and the thermopower is again negative at
T�TK. This occurs at T=T2, which is found to be of order �
�see below�. Due to the factor 1 /T coming from the deriva-
tive of the Fermi function in I1, the negative thermopower at
T�T2 acquires a maximum negative value and then de-
creases as 1 /T at T��, exhibiting no further sign changes,
as confirmed also numerically. We note that, away from half
filling �vg=0�, the modified second-order perturbation in U
approach50,51 gives an incorrect sign for the slope of the
spectral density at the Fermi level in the Kondo regime. This
results in a wrong sign for the thermopower at T�TK in the
Kondo regime21 compared to our NRG calculations �which
agree with those of Ref. 52�. Approximate approaches using
an infinite U Anderson model53,54 could also not access the
low-temperature Kondo regime.

The sign changes in the thermopower of strongly corre-
lated quantum dots at the temperatures T1 and T2 in the
Kondo regime, are particularly interesting. They provide a
“smoking gun” signature for Kondo behavior in quantum
dots, and could be used in future experiments as sensitive
probes of strong correlations and Kondo physics. It is there-
fore interesting to give a detailed characterization of the de-
pendence of T1 and T2 on gate voltage and interaction
strength U /�. We show in Figs. 4�a� and 4�b� the loci of T1
and T2 as a function of vg�0 for quantum dots and magnetic
impurities for three interaction strengths. Although S�T� van-
ishes at vg=0, T1 and T2 have finite limiting values there.
These are difficult to determine numerically due to the van-
ishingly small thermopower in this limit, and they are diffi-
cult to obtain analytically since T1 and T2 lie outside the
Fermi-liquid regime where analytic calculations are possible.
Estimates of these values at the smallest gate voltage are
close to the limiting values. They are tabulated in Table I,
together with the relevant Kondo scales at midvalley.
Whereas the limiting values of T1 are comparable for both
quantum dots and magnetic impurities, the limiting values of
T2 for quantum dots are approximately twice larger than for
magnetic impurities. By carrying out additional calculations,
using a finer grid of gate voltages, we determined the critical
gate voltages vg

c�U /��, beyond which no sign change occurs
�indicated in Figs. 4�a� and 4�b�	. For each value of U /�, we
find that vg

c corresponds to entering the mixed-valence re-
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FIG. 4. �Color online� Dependence of the temperatures T1 �filled
symbols, solid lines� and T2 �open symbols, dashed lines� at which
S�T� changes sign as a function of vg�0.25 for U /�=3,6 ,8 �left
panel: quantum dot, right panel: magnetic impurity�. The critical
gate voltage, vg

c, beyond which no sign change occurs in S�T� at
finite vg is indicated in the legend for each case.
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gime, i.e., vg
c corresponds to a local level position �d�

−� /2 in the single-channel Anderson model.

C. Thermal conductance: Ke(T)

The electronic contribution to the thermal conductance of
a strongly correlated quantum dot, shown in Figs. 3�g�–3�i�,
also exhibits interesting behavior: a crossing point at T�� is
found in the Kondo regime and for gate voltages approach-
ing the mixed-valence regime �Fig. 3�g� and inset	. Such
�approximate� crossing points are typical signatures of strong
correlations and are well known in other contexts, including
3He and heavy fermions,55 dissipative two-level systems56

and doped Mott insulators.57 On entering the mixed-valence
and empty-orbital regimes �Figs. 3�h� and 3�i�	, two peaks
develop on either side of the crossing point �the lower peak
being at T�0.5� and the upper one at T�2��. These quali-
tative features in Ke�T� can be related to A�� ,T�, as in the
case of S�T� �see also Sec. VI C�.

D. Moderate to weak correlations

The effect of reducing correlations to a moderate value,
U /�=3, is shown in Fig. 11 of Appendix B: the trends are
similar to those described above, with a significantly dimin-
ished Kondo regime. In particular, the evolution with gate
voltage of G�T� is similar to that in the strongly correlated
case �see Figs. 11�a�–11�c�	 and the thermopower exhibits
two sign changes as a function of temperature in the Kondo
regime �Fig. 11�d�	, with a rapid evolution to a single nega-
tive peak in the mixed-valence and empty-orbital regimes
�Figs. 11�e� and 11�f�	. However, the crossing point in Ke in
the Kondo regime becomes less evident for moderate corre-
lations �Fig. 11�g�	, and, the two-peaked structure for Ke in
the mixed-valence and empty-orbital regimes is replaced by
a single peak with a shoulder �Figs. 11�h� and 11�i�	.

These general trends, for correlated quantum dots, con-
trast with those for weakly correlated quantum dots, shown
in Figs. 12�a�–12�c� of Appendix B for U /�=1. These ex-
hibit no sign change in the thermopower for any gate voltage
vg�0. Similarly, the thermal conductance for weakly corre-
lated quantum dots shows no crossing point, exhibiting only
a single finite-temperature peak.

E. High-temperature asymptotics

The FDM approach allows us to easily investigate the
high-temperature asymptotics of transport properties. As we

discuss also in the context of dilute magnetic impurities in
Sec. VI below, earlier transport calculations15 could not dis-
cern the highest-temperature peak in S�T� �occurring at T
�6� for U /�=8, see Fig. 3�d�	, nor the peak in the thermal
conductivity �see discussion in Sec. VI below�. Here, we are
able to do so. In addition, the numerical calculations recover
the high-temperature asymptotics of the transport properties:
G�T��1 /T, S�T��1 /T, and Ke�T��1 /T2 for T��. Note
that, for the Anderson model, the logarithmic corrections in
the Kondo regime occur at intermediate temperatures TK
�T��: the corrections at T�� go over to the above power
laws.

VI. COMPARISON WITH DILUTE MAGNETIC
IMPURITIES

It is interesting to quantify the differences in the transport
properties of quantum dots given by Eqs. �4�–�6� with the
analogous transport properties of dilute magnetic impurities
given by Eqs. �11�–�13�. This is shown in Fig. 5 for the
temperature dependence of transport properties in the
Kondo, mixed-valence, and empty-orbital regimes for U /�
=6.

TABLE I. Kondo temperature TK �in units of �� at midvalley
vg=0 �symmetric point� for U /�=8,6 ,3. Also shown are the tem-
peratures T1 and T2 �in units of �� at which the thermopower, S�T�,
changes sign at vg=0.25 �the smallest vg studied�. The numbers in
brackets are the corresponding temperatures for magnetic
impurities.

U /� TK�vg=0� /� T1�vg=0.25� /� T2�vg=0.25� /�

8 2.64�10−3 0.044 �0.04� 3.04 �1.39�
6 1.10�10−2 0.056 �0.05� 2.12 �1.00�
3 8.20�10−2 0.13 �0.12� 0.71 �0.41�
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FIG. 5. �Color online� Comparison of transport properties for
quantum dots �solid lines� and magnetic impurities �dashed lines� in
the strongly correlated regime U /�=6. �a�–�c�: normalized electri-
cal conductance G�T� /G0 �quantum dot� and normalized resistivi-
ties � /�0 �impurity�, where �0 is defined in Eq. �16�. �d�–�f�: ther-
mopower S�T� for quantum dots and impurities �inset of �d� shows
the low-temperature Kondo peak in the thermopower in more de-
tail	. �g�–�i�: electronic contribution to the thermal conductance
c1Ke /G0 �quantum dot� and thermal conductivity c2�e�0 �impurity�,
rescaled by G0 and �0, respectively, so that the same unit �K� ap-
plies to both cases. The numerical factors c1=102 and c2=5
�10−4 are included for clarity of presentation. The inset in �g� for
Ke�T� /G0 shows the crossing point in Ke�T� /G0 at T /��0.6 in
more detail and the evolution of the second peak in the thermal
conductance of the quantum dot as the mixed-valence regime is
approached �with inclusion of four additional gate voltages vg

=1.50, . . . ,2.25 in the Kondo regime�. The range of gate voltages is
vg=0.25, . . . ,1.25 �Kondo�, vg=2.25, . . . ,3.75 �mixed valence�, and
vg=4.0, . . . ,5.75 �empty orbital�.
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A. Comparison of G(T) and �(T)

In the Kondo regime, and for temperatures T��, the con-
ductance of a quantum dot is a universal function of T /TK,
i.e., G�T� /G�0�= f�T /TK� �e.g., see Ref. 47�. The same holds
for the analogous quantity for dilute magnetic impurities,
namely, the resistivity, i.e., ��T� /��0�= f��T /TK� �e.g., see
Ref. 15�. Since G and � are different physical quantities, the
functions f and f� are different and they cannot be made to
coincide by using a common Kondo scale TK �e.g., the
Kondo scale defined in Eq. �19�	. This is seen in Fig. 5�a�,
which shows that the conductance curves for quantum dots
are shifted in temperature, on a logarithmic scale, relative to
the resistivity curves of magnetic impurities. The two func-
tions f and f� are rigorously identical only in the Fermi-
liquid regime T�TK. Experimentally, however, the acces-
sible range of temperatures is that around T�TK, say one
decade below and one decade above TK. For this region of
temperatures, the two functions f and f� can be made to

coincide by redefining them as new functions f̃ and f̃�, re-
spectively, with different respective Kondo scales, TK

G and TK
�

such that f̃�T /TK
G=1�= f̃��T /TK

� =1�=1 /2, see Ref. 47. In the
mixed-valence and empty-orbital regimes, Figs. 5�b� and
5�c� show that the conductance of a quantum dot differs sig-
nificantly from the resistivity of magnetic impurities �with
significant deviations at T�0.1��. In particular, the afore-
mentioned finite-temperature peak in the conductance of a
quantum dot is absent in the resistivity of magnetic impuri-
ties. A signature of this peak in ��T� is seen at most in the
Kondo regime at temperatures of order � �see Fig. 5�a�	 and
is absent in the mixed-valence and empty-orbital regimes.
These differences to the quantum dot case, arise, as de-
scribed in Sec. III, due to the different way in which the
spectral function appears in the respective transport integrals.
These differences reflect also the absence of universality out-
side the Kondo regime.

B. Comparison of thermopowers: S(T)

In Figs. 5�d�–5�f� we see that, up to an overall sign
change, due to A�� ,T� appearing differently in the transport
integrals as explained in Sec. III, the thermopower of mag-
netic impurities behaves in a qualitatively similar way to that
of a quantum dot, with two sign changes at T1�vg� and T2�vg�
�shown in Fig. 4�b�	 and three extrema. In the Kondo regime,
the position, Tp, of the Kondo enhanced peak in the ther-
mopower of magnetic impurities is found to scale with TK,
just as for the quantum dot case �see Sec. V B�. A significant
difference between S�T� for magnetic impurities and quan-
tum dots is the much larger high-temperature peak �at T
�T2� for the former in the Kondo regime �by as much as a
factor 5, see Fig. 5�d�	. This difference holds to some extent
also in the mixed-valence regime �Fig. 5�e�	. In the empty-
orbital regimes, the thermopowers show a single peak at T
�� with a similar magnitude for both cases �Fig. 5�f�	.

C. Comparison of Ke(T) and �e(T)

The electronic contribution to the thermal conductivity of
magnetic impurities, �e, shows significant differences to the

corresponding thermal conductance of quantum dots, Ke, see
Figs. 5�g�–5�i�. For example, whereas Ke exhibits interesting
structure with either one �in the Kondo regime� or two �in the
mixed-valence and empty-orbital regimes� peaks around T
��, �e only exhibits a single peak in all regimes, and this
peak occurs at a much larger temperature T��. The reason
for the latter difference is the following: the main contribu-
tion to the thermal conductance and thermal conductivity
come from the integrals I2 and M2 in Eqs. �7� and �14�,
respectively, which involve integrals of −��f /����2A�� ,T�
and −��f /����2 /A�� ,T�, respectively. For the former, the
peaks in A�� ,T� at �d and �d+U result in a peak in the
integrand at ����U /2�� whereas in the latter, the dips in
1 /A�� ,T� at �d and �d+U shift the main contribution to the
integral to much higher energies ����U /2. Correspondingly,
the temperature of the peaks in Ke in the former are at T
�U /2 and for the latter are at T�U /2��, in agreement
with the numerical results. The existence of two peaks in Ke
in the mixed-valence and empty-orbital regimes as opposed
to a single peak in the Kondo regime is also easily explained:
the two peaks reflect the sampling of the two incoherent
features at �d and �d+U in �2A�� ,T� appearing in the mo-
ment I2 for Ke. In the Kondo regime, these excitations lie
close to each other and only one peak results. Similarly, the
single peak in �e for all regimes results from the strong sup-
pression of the above incoherent excitations in 1 /A�� ,T�
appearing in the moment M2.

VII. FIGURE OF MERIT, POWER FACTOR, AND
LORENZ NUMBER

A measure of the thermoelectric efficiency of a quantum-
dot device is the dimensionless figure of merit defined by
ZT=GS2T / �Ke+Kph�, where Kph is the phonon contribution
to the thermal conductance. Hence for high efficiency, one
requires either large S or small total thermal conductance
relative to electrical conductance or both conditions simulta-
neously. A calculation of ZT for quantum-dot systems would
therefore require knowledge of the material-specific phonon
contribution to the thermal conductance Kph. Similarly, for
magnetic impurity systems, a calculation of the dimension-
less figure of merit, ZT=	S2T / ��e+�ph�, would require
knowledge of the material-specific phonon contribution to
the thermal conductivity �ph. This is outside the scope of the
present paper, so instead we show in Figs. 6�a�–6�c� results
at U /�=8 for the quantity ZT0=GS2T /Ke, for quantum dots,
and ZT0=	S2T /�e, for magnetic impurities �with the latter
being depicted on the negative axis for clarity�. In addition,
we also show in Figs. 6�d�–6�f� an appropriate rescaled
power factor �PF0=S2G /G0 for quantum dots and PF0
=S2	 /	0 for magnetic impurity systems�. This is another
useful measure of an efficient thermoelectric system, by-
passing lack of knowledge of the total thermal conductances
�conductivities�.

A. Figure of merit

Since, in the low-temperature limit, the thermopower of
the Anderson model vanishes linearly with temperature in all
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regimes, a significant figure of merit is found only at finite
temperature, as seen in Figs. 6�a�–6�c�.

In the Kondo regime, Fig. 6�a�, enhanced regions of ZT0
are found in four temperature regions, �i�, at T�Tp, due the
low-temperature Kondo enhancement of the thermopower,
however the magnitude of ZT0 is tiny �see inset of Fig. 6�a�	,
�ii�, at temperatures of order � in the region T1�T�T2,
where ZT0 can be of order 0.2–0.3 for both quantum dots and
magnetic impurities, �iii�, at temperatures T�T2, with en-
hancements comparable to those for region �ii�, and, �iv�, in
the asymptotic region T��, where ZT0 saturates to a finite
value which is larger for quantum dots than for magnetic
impurities �discussed below�.

The behavior of the figure of merit in the mixed-valence
and empty-orbital regimes is complicated, see Figs. 6�b� and
6�c�. In the mixed-valence regime, significant enhancements
are found, for quantum dots, at temperatures somewhat be-
low �, see Fig. 6�b�, and in the asymptotic regime T��.
Similar enhancements are found also for the empty-orbital
case �Fig. 6�c�	. For magnetic impurities, similar enhance-
ments to quantum dots are found on temperature scale of
order � but at T��, the enhancements are much smaller
than for quantum dots �see Figs. 6�b� and 6�c�	. The latter
effect is due to the much larger thermal conductivities �even
at higher temperatures� of magnetic impurities as compared

to those of quantum dots �see discussion above and Figs.
6�g�–6�i�	.

B. Power factor

The power factor PF0 is enhanced in the same regimes
�i�–�iii� as the figure of merit, see Figs. 6�e� and 6�f�, but
vanishes as 1 /T3 in the limit T�� �using the asymptotic
behavior of S and G from Sec. V E�. In the Kondo regime,
PF0 exhibits a much larger peak above T2 for magnetic im-
purities as compared to quantum dots �see Fig. 6�d�	. This
reflects the observation made above �Sec VI B� that the
highest-temperature peak in S�T� at T�T2 for magnetic im-
purities is significantly enhanced as compared to that of
quantum dots. For quantum dots, the main enhancement in
PF0 in the Kondo regime is in the range T�T2. These trends
differ little from those observed in the mixed-valence and
empty-orbital regimes for both quantum dots and magnetic
impurities �see Figs. 6�e� and 6�f�	.

C. Wiedemann-Franz law and Lorenz number

We comment on the enhancement of ZT0 in the region
T��, which can result in ZT0�1 �e.g., in the mixed-valence
and empty-orbital cases�. This enhancement reflects a viola-
tion of the Wiedemann-Franz law at T��. The latter states
that the thermal conductance �conductivity� is proportional to
the electrical conductance �conductivity� multiplied by tem-
perature, i.e., that the Lorenz number L�T�, defined for quan-
tum dots by

L�T� = Ke�T�/TG�T� , �21�

and for magnetic impurities by

L�T� = �e�T�/T	�T� , �22�

is independent of temperature and takes on the universal
value L0=�2kB

2 /3e2. Since, ZT0=S2 /L�T�, a significant re-
duction in L�T� /L0 can result in an enhancement of ZT0. In
Figs. 6�g�–6�i�, we see that L�T� /L0 is much suppressed at
T��, thereby allowing for significant enhancements in ZT0
in this limit. This enhancement is seen for all regimes, espe-
cially for the mixed-valence and empty-orbital regimes. We
note, however, that from Figs. 6�g�–6�i� �and inset�, the
Wiedemann-Franz law is, on the whole, reasonably well sat-
isfied at temperatures T��, and becomes exact in the Fermi-
liquid regime15�for other violations of the Wiedemann-Franz
law see Ref. 58�.

VIII. UNIVERSAL SCALING FUNCTIONS FOR
THERMAL TRANSPORT THROUGH QUANTUM DOTS

By analogy to the scaling properties of the electrical con-
ductance G�T� /G�0�= f�T /TK�, where f is a universal func-
tion of t=T /TK in the Kondo regime, it is interesting to es-
tablish to what extent such scaling is present in the
thermopower, S�T�, and the thermal conductance, Ke�T�, of
strongly correlated quantum dots. We investigate this here,
for U /�=8 and for values of the gate voltage in the Kondo
regime �see Fig. 7�.
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FIG. 6. �Color online� Temperature dependence of, �a�–�c�, the
“figure of merit,” ZT0, �d�–�f�, the “power factor,” PF0, and, �g�–�i�,
the Lorenz number ratio L�T� /L0 for a quantum dot �solid lines,
positive y axis� and for magnetic impurities �dashed lines, shown on
the negative y axis for clarity�. Results are for U /�=8 and the same
range of dimensionless gate voltages as in Fig. 3. For quantum dots
we define ZT0=GS2T /Ke, PF0=S2G /G0, and L�T� /L0=Ke /GT
with L0=�2kB

2 /3e2. The corresponding quantities for magnetic im-
purities are defined by ZT0=	S2T /�e, PF0=S2	 /	0, and L�T� /L0

= ��e /	T� where 	=1 /� and 	0=1 /�0. Arrows indicate the evolu-
tion of the transport quantities with increasing vg�0. Insets in �a�
and �d� for the Kondo regime, show the low-temperature peak in
ZT0 and PF0 in the vicinity of TK�vg��2.6�10−3� �Table I�. The
inset in �g� for the Lorenz number shows the deviations from the
Wiedemann-Franz law in the region around TK�vg�. In this inset,
L�T� /L0 is shown on the positive y axis for both impurity and
quantum-dot cases.
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In the Fermi-liquid regime, T�TK, we have15

S�T� = −
��T

�e�
cot��nd/2� . �23�

Scaling can therefore be expected for S�T� /T, once the oc-
cupancy �and gate voltage� dependent factor cot��nd /2� is
scaled out. In the above, ��1 /TK is a measure of the inverse
Kondo scale and can be extracted59 from the numerical value
of limT→0�S�T�� /T using Eq. �23� and the calculated values of
nd from Fig. 1. We see from Fig. 7�a� that s�T /TK�
= �e�S�T� /��T cot��nd /2� does indeed scale with �T
�T /TK for a range of gate voltages in the Kondo regime.
This scaling extends up to temperatures comparable to TK
with significant deviations setting in above this temperature
scale. This is not surprising given the fact that the ther-
mopower is a highly sensitive probe of the particle-hole
asymmetry in the spectral density.

For the thermal conductance, Ke�T�, we expect from the
Wiedemann-Franz law, Ke /T�G�T�, to see a scaling in
Ke�T� /T similar to that in G�T� /G�0�. This is confirmed in
Fig. 7�b� which shows Ke�T� /�T versus T /TK

� for several
gate voltages in the Kondo regime, where � is defined by

� = lim
T→0

Ke�T�
T

=
�2kB

2A�0,0�
3

�24�

and TK
� is a Kondo scale defined by

Ke�T = TK
� �

TK
� =

�

2
. �25�

We see that, for U /�=8, Ke�T� /�T=g�T /TK
� � is a universal

function of T /TK
� for temperatures extending up to at least

100TK
� , just as G�T� /G�0�= f�T /TK� is a universal function of

T /TK for temperatures extending up to at least 100TK. In-
creasing U /�, and thereby reducing TK /� allows universal-
ity to extend to still higher temperatures. Suppressing charge
fluctuations, e.g., by working within a Kondo model, allows
these universal scaling functions to be defined for all tem-
peratures. Note also, that although these universal functions f
and g have a similar functional dependence on T /TK and
T /TK

� , respectively, they are shifted relative to one another on
an absolute-temperature scale. The difference between g and
f for temperatures around T=TK

� �TK /1.9 accounts for the
violation in the Wiedemann-Franz law on this scale, as noted
previously �see inset of Fig. 6�g�	. The Wiedemann-Franz
law is only satisfied exactly in the Fermi-liquid regime T
�TK. One can collapse G�T� onto Ke�T� /T by scaling the
temperature axis of the former by TK

� /TK. In the universal
regime T��, small deviations between g�t� and f�t� arise for
t�1 and t�1.

For dilute magnetic impurities, our conclusions for scal-
ing in the Kondo regime are essentially the same as those
above for quantum dots �see also Ref. 15�.

IX. GATE-VOLTAGE DEPENDENCE OF TRANSPORT
PROPERTIES

The gate-voltage dependence of transport through quan-
tum dots and magnetic impurities is shown for several rep-
resentative temperatures in Fig. 8 for the electrical and ther-
mal transport and in Fig. 9 for the thermopower. For
magnetic impurities, different vg should be understood as
corresponding to changes in the local level position �d rela-
tive to the Fermi level, as invoked by the application of
pressure �either chemical via doping or hydrostatic�. In some
rare-earth systems,18 the application of pressure has been
shown to tune the magnetic impurities from the Kondo to the
mixed-valence and empty-orbital regimes. Throughout this
section, we denote by T1 and T2 the minimum temperatures
of T1�vg� and T2�vg� in the limit vg→0 �see Fig. 4 and Table
I�. We show that the different behavior in the gate-voltage
dependence of the thermopower, at fixed temperature T, can
be classified in terms of the relative value of T to T1 and T2.

A. Gate-voltage dependence of G and Ke

The gate-voltage dependence of the electrical and thermal
conductance of quantum dots is shown in Figs. 8�a�–8�c�.
The former exhibits, for T�TK, Coulomb blockade peaks at
�d= �U /2� with a suppression of the conductance in the
midvalley region around vg=0. On decreasing the tempera-
ture, the Kondo effect becomes operative resulting in an en-
hancement of the conductance in the region between the
Coulomb-blockade peaks �see Fig. 8�a�	. This picture is well
known. At T�TK, the thermal conductance of quantum dots
also exhibits Coulomb-blockade peaks,60,61 not directly evi-
dent in the plot of Ke versus gate voltage �Fig. 8�b�	, where
only weak signatures of these are discernible. They become
clearer in the gate-voltage dependence of Ke /T which by the
Wiedemann-Franz law �see Sec. VII C� is proportional to the
electrical conductance G�T�, as seen in Fig. 8�c�. Differences
between Figs. 8�a� and 8�c� indicate the degree of deviation
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FIG. 7. �Color online� �a� S�T� /T for a quantum dot, scaled by
its limiting low-temperature absolute value �� cot��nd /2� / �e� ver-
sus �T�T /TK for U /�=8 and a range of gate voltages in the
Kondo regime. Here, ��1 /TK �Ref. 59�. �b� The thermal conduc-
tance Ke�T�, scaled by �T, versus T /TK

� , for parameters as in �a�,
with � defined in Eq. �24� and TK

� a Kondo scale defined in Eq. �25�.
The electrical conductance G�T� /G�0� versus T /TK

� at vg=0.25 is
also shown. The Kondo scale defined by G�T=TK�=G�0� /2 is re-
lated to TK

� by TK�1.9TK
� .
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from the Wiedemann-Franz law. These deviations are largest
at T�� for all gate voltages, as previously observed in Figs.
6�g�–6�i�.

The same observations, using a different terminology, can
be made for the case of magnetic impurities in Figs.

8�d�–8�f�: the valence fluctuation peaks at T�� are now
seen in the resistivity of mixed-valence impurities whereas
Kondo impurities �vg�0� have a small resistivity at T��
and a large unitary resistivity at T=0. The behavior of the
thermal conductivity �e is similarly understood in terms of
the Wiedemann-Franz law �e�T��	T with 	=1 /�, as seen
by comparing Figs. 8�d� and 8�f�.

B. Gate-voltage dependence of S

The gate-voltage dependence of the thermopower of
quantum dots is shown in Fig. 9�a�. The particle-hole sym-
metry about vg=0 �see Sec. II� implies S−vg

=−Svg
at all tem-

peratures so we only discuss vg�0. We focus mainly on the
Kondo regime, vg�vg

c, and discuss the remaining gate volt-
ages by reference to Fig. 3. There are three main types of
behavior, characterized by the following temperatures, T,
relative to T1 and T2: �i�, T�T1, as exemplified by T
=0.01�, �ii�, T1�T�T2 as exemplified by T=0.1� and T
=�, and, �iii�, T�T2, as exemplified by T=10�. In case �i�,
the Kondo resonance is asymmetric about the Fermi level,15

lying slightly above it for vg�0. The slope of the spectral
density at �=0 is positive, resulting by Eq. �20� in a negative
thermopower, as observed for T=0.01�. The same holds, at
still lower temperatures, T�TK, where Fermi-liquid theory15

gives the explicit expression �23�. Case �ii�, T1�T�T2, is
the most interesting for quantum dots, for several reasons:
first, this temperature range is experimentally accessible
since for U /�=8, we have T1=0.044� and T2=3.04�. Sec-
ond, there is an overall sign change in S�vg�, relative to case
�i�, for a finite range of gate voltages �see Fig. 9�a�	. Third, a
further sign change occurs at finite vg�0, and, fourth, the
thermopower is large enough for a significant range of gate
voltages to enable its measurement. The sign change at a
finite gate voltage occurs when S�T1�T�T2� as a function
of vg in Fig. 3�d� reaches the value zero and becomes nega-
tive.

For gate voltages outside the Kondo regime, the ther-
mopower, as a function of gate voltage, S�vg�, either ap-
proaches zero at vg�1 �as happens for T=0.1 in Fig. 9�a�	 or
does not saturate for vg�1 �e.g., for T=� in Fig. 9�a�	. In
terms of Fig. 3�f� �see the arrows�, the former occurs for
temperatures to the left of the minimum in S in Fig. 3�f�, and
the latter occurs for the opposite case. The latter case is half
way to case �iii�, T�T2��, which exhibits a thermopower
approximately linear in gate voltage, with no sign change at
any vg�0. This is similar to the “sawtooth” behavior of
S�vg� found for multilevel quantum dots weakly coupled to
leads at T�� in Refs. 62 and 63 �for related experimental
work see Refs. 64–69�. The behavior of the thermopower in
multilevel open quantum dots has also been investigated.70–72

The same classification �i�–�iii�, as for quantum dots, can
be used to explain the local level dependence of the ther-
mopower of magnetic impurities shown in Fig. 9�b�.

X. CONCLUSIONS AND DISCUSSION

In this paper, we investigated the thermoelectric proper-
ties of strongly correlated quantum dots, described by the
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single-level Anderson impurity model connected to two
conduction-electron leads. For this purpose, we used Wil-
son’s NRG method and calculated the local Green’s function
and transport properties by using the full density-matrix
approach.33 Since this approach builds into the density ma-
trix all excitations obtained in the NRG approach, it is par-
ticularly well suited to finite-temperature transport calcula-
tions, allowing us, for example, to investigate also the high-
temperature asymptotics of transport properties.

For strong correlations and in the Kondo regime, the ther-
mopower exhibits two sign changes, at temperatures T1�vg�
and T2�vg� with T1�T2. We found that T1�Tp�vg��TK�vg�,
where Tp�vg� is the position of the Kondo-induced peak in
the thermopower, TK�vg� is the Kondo scale, and T2=O���.
The loci of T1�vg� and T2�vg� merge at a critical gate voltage
vg=vg

c�U /��, beyond which no sign change occurs. We de-
termined vg

c for different U /� finding that vg
c coincides, in

each case, with entry into the mixed-valence regime. No sign
change is found outside the Kondo regime or for weak cor-
relations, U /��1. Thus, a sign change in S�T� at finite vg is
a particularly sensitive signature of strong correlations and
Kondo physics. This effect could be measurable in quantum
dots, as it manifests itself in an overall sign change in S for a
finite range of gate voltages on increasing temperature T
from below T1�vg→0� to values in the range T1�T�T2
=O���, which is an accessible range since T1�TK.

The results for quantum dots were compared also to the
relevant transport coefficients of dilute magnetic impurities
in nonmagnetic metals: the electronic contribution, �e, to the
thermal conductivity, the thermopower, S, and the impurity
contribution to the electrical resistivity, �. As regards the
temperature dependence of the respective transport quanti-
ties, we find, in the mixed-valence and empty-orbital re-
gimes, two peaks in Ke�T� as compared to a single peak in
�e�T�. Similarly, G�T� exhibits a finite-temperature peak on
entering the mixed-valence regime whereas such a pro-
nounced peak is absent in ��T�, even far into the empty-
orbital regime. As for quantum dots, we find that the low-
temperature Kondo peak position in the thermopower of
magnetic impurities scales with TK. We compared and con-
trasted the figure of merit, power factor, and the extent of
violation of the Wiedemann-Franz law in quantum dots and
dilute magnetic impurities, finding enhanced figures of merit
at temperatures where the Wiedemann-Franz law is strongly
violated. Finally, we clarified the extent of scaling, as a func-
tion of T /TK, in the thermopower and thermal conductance
of quantum dots in the Kondo regime.

We comment on a recent experiment in Ref. 20 which we
believe shows evidence of Kondo correlations in the ther-
mopower of a strongly correlated quantum dot. In this ex-
periment, the thermovoltage across a Kondo correlated quan-
tum dot is investigated as a function of gate voltage and
lattice temperature. This can be compared to our S�vg� in Fig.
9�a�. The gate voltage VE in Ref. 20 is related to our dimen-
sionless gate voltage, vg, via −eVE��d�vg, i.e., VE�−vg.
Mirror reflecting our results for S�vg� in Fig. 9�a� about vg
=0 allows a qualitative comparison with the experimental
measurements in Ref. 20. Using the experimental estimate
�=0.35 meV from Ref. 20, we can translate the four experi-
mental temperatures TL=0.07 K, 0.25 K, 1.00 K and TL

=1.46 K at which the thermopower was measured into our
theoretical temperatures in units of �. We assume strong
Coulomb correlations on the dot U /�=8 and show the re-
sults for the thermopower in Fig. 10. From Table I, the low-
est experimental temperature corresponds to T�T1, the next
lowest temperature �T=1.00 K� lies close to T=T1, where
the thermopower changes sign in the Kondo regime, and the
highest two temperatures lie between T1 and T2. The lowest
temperature measured, T=0.07 K, indeed shows a positive
thermopower above midvalley, in agreement with our results
for T�T1. Upon increasing the temperature, the experiment
shows a sign change in the thermovoltage for a finite range
of gate voltages �relative to midvalley�, which is consistent
with our prediction of such a sign change in the Kondo re-
gime for T2�T�T1. The onset, with increasing temperature,
of an additional oscillation in S�vg� about vg=0 in the ex-
periments is therefore consistent with our results. The experi-
mental data deviates from our calculated thermopower in the
mixed-valence and empty-orbital range of gate voltages vg
�1, with the theoretical results showing a much larger ther-
mopower in this region of gate voltages. These deviations are
expected at vg�1 since additional levels present in real
quantum dots, but absent in our model, start being populated.
This significantly influences transport through the quantum
dot. Qualitatively, however, we are able to interpret these
experiments on the thermopower of Kondo correlated quan-
tum dots for gate voltages vg�0. For a more quantitative
comparison to theory, further investigations are needed.

Calculations for single quantum dots and dilute magnetic
impurities, are a starting point for dealing with a finite den-
sity of quantum dots, such as self-assembled quantum dots,
or for a finite concentration of magnetic or mixed-valence
impurities in bulk �e.g., for Tl impurities in PbTe �Ref. 9�	.
The transport properties of such systems, modeled by a ran-
dom distribution of Anderson impurities, will be determined
by Eqs. �11�–�13� subject to the charge-neutrality condition
nind+nc=n, where nd is the occupancy of the dot �impurity�,
nc is the occupancy of the relevant conduction band, and n is
the total electron filling. Coupled with material-specific
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electronic-structure information and the effects of phonons,
such calculations, will be important for understanding the
potential of materials such as self-assembled quantum dots
or PbTe1−xTlx systems for thermoelectric applications.
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APPENDIX A: REDUCTION OF TWO-CHANNEL
ANDERSON MODEL TO A SINGLE-CHANNEL ANDERSON

MODEL

The reduction in the single-level two-lead Anderson
model �1� for a quantum dot, to a single-channel model is, in
general, approximate, but as we show here, the approxima-
tion is very good �or even exact�. One notices first, that the d
state of the quantum dot in Eq. �1� only couples to the even
combination tLcLk	+ tRcRk	 of the lead electron states. By us-
ing the following canonical transformation:

taek	 = tLcLk	 + tRcRk	, �A1�

taok	 = tLcRk	 − tRcLk	, �A2�

noting that normalization of even/odd states implies t2= tL
2

+ tR
2 , we can rewrite Eq. �1� in terms of even �e� and odd �o�

lead states, as follows:

H = �
k	


ek	aek	
† aek	 + �

	

�dd	
†d	 + Und↑nd↓

+ t�
k	

�aek	
† d	 + H.c.� + Ho + Hpot. �A3�

Here, �ek	= ��Lk	tL
2 +�Rk	tR

2� / t2, Ho=�k	
ok	aok	
† aok	 is the

Hamiltonian for the odd lead electrons with �ok	= ��Lk	tR
2

+�Rk	tL
2� / t2, and Hpot=�k	Uk

eo�aek	
† aok	+H.c.� is a potential

scattering term between even and odd lead electrons. Hence,
the odd lead electrons do not couple to the dot directly but
only indirectly via the potential scattering term. The magni-
tude of this is given by Uk

eo= ��Lk	−�Rk	�tLtR / t2, which is
vanishingly small at low energies. Moreover, it vanishes
identically for degenerate leads �Lk	=�Rk	. The calculations
we report in this work, using the single-channel Anderson
model

H = �
k	


ek	aek	
† aek	 + �

	

�dd	
†d	 + Und↑nd↓

+ t�
k	

�aek	
† d	 + H.c.� , �A4�

are therefore a very good approximation, even in general, to
those obtained from the two-lead model �1� and identical to
those for the case �Lk	=�Rk	. Since t2= tL

2 + tR
2 , the hybridiza-

tion strength �̃=�NFt2 of the single-channel model is seen to

be the relevant single-particle broadening, �̃L+ �̃R, of the

two-lead model �1�. In this paper, we follow the convention
in the quantum-dot community of using the full width at half

maximum, �=2�̃, as the unit of energy. Finally, we note, that
a reduction to a single-channel model is, in general, not pos-
sible for multilevel or double quantum dots attached to two
leads.73–75

APPENDIX B: RESULTS FOR MODERATE AND WEAK
CORRELATIONS

Figure 11 shows results for a moderately correlated quan-
tum dot, U /�=3 exhibiting the same trends as those found
for the strongly correlated case U /�=8 �Fig. 3�.

For completeness, we show an example of transport
through a weakly correlated quantum dot with U /�=1 in
Fig. 12. In this case, the thermopower remains negative for
all gate voltages vg�0 �Fig. 12�b�	. Similarly, the thermal
conductance exhibits only a single peak for all gate voltages
�Fig. 12�c�	.

APPENDIX C: GREEN’S FUNCTIONS WITHIN THE FDM
APPROACH

In this appendix, we give an alternative derivation of the
finite-temperature Green’s function within the FDM ap-
proach of Weichselbaum and von Delft.33 A concise deriva-
tion, implementing arbitrary abelian symmetries, has also
been given in Ref. 35. We consider a general fermionic re-
tarded Green’s function,

GAB�t� = − i��t�
�A�t�,B	+�=− i��t�Tr���A�t�B + BA�t�	� ,

where A ,B are fermionic operators, e.g., for the d-level
Green’s function of our quantum dot A=d	 and B=d	

† . The
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T /�, in the moderately correlated regime U /�=3 and a range of
dimensionless gate voltages, vg= ��d+U /2� /��0, in the Kondo
�first column�, mixed-valence �second column�, and empty-orbital
�third column� regimes. The range of vg is indicated in the top
panels for each regime and the increment used was 0.25. Arrows
indicate the evolution of the transport quantities with increasing vg.
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trace is evaluated for an appropriate density matrix � by
using the complete set of states introduced by Anders and
Schiller.37 These consist of the set of states �lem�= �lm��e�
obtained from the eliminated eigenstates, �lm�, of Hm, and
the degrees of freedom, denoted collectively by e, of the sites
i=m+1, . . . ,N, where N is the longest chain diagonalized.
The retained low energy states of Hm are denoted �km�, and
�kem�= �km��e� extends these to the Hilbert space of HN by
the additional environment degrees of freedom e of the sites
i=m+1, . . . ,N. The eigenstates �retained and eliminated�,
�p= �k ,e�m�, and eigenvalues, Ep=�k,l�

m , of Hm satisfy Hm�pm�
=Ep

m�pm�. Completeness of the states �lem� is expressed by37

1 = �
m�=m0+1

N

�
le

�lem��
lem�� , �C1�

where m0 is the last iteration for which all states are retained.
For iterations m�m0, the set of states �p= �k , l�m� consists of
both retained �k� and eliminated �l� states. The following
decomposition of Eq. �C1� is useful:37

1 = �
m�=m0+1

N

�
le

�lem��
lem�� = 1m
+ + 1m

− , �C2�

1m
− = �

m�=m0+1

m

�
le

�lem��
lem�� , �C3�

1m
+ = �

m�=m+1

N

�
le

�lem��
lem��

=�
ke

�kem�
kem� , �C4�

where the last equation follows from the fact that the Hilbert
space of retained states at iteration m �supplemented by the

degrees of freedom e for sites m�=m+1, . . . ,N� spans the
same Hilbert space as all eliminated states from all subse-
quent iterations. By using the decomposition of unity �Eq.
�C1�	 twice within the trace in the expression for GAB�t�, the
following Lehmann representation can be found for this
Green’s function:34

GAB�t� = GAB
i + GAB

ii + GAB
iii ,

GAB
i = − i��t� �

m=m0+1

N

�
le,l�e�

�ei�El
m−E

l�
m�t
lem�A�l�e�m�

�
l�e�m�B��lem� + ei�El
m−E

l�
m�t
lem�A�l�e�m�

�
l�e�m��B�lem�	 ,

GAB
ii = − i��t� �

m=m0+1

N−1

�
le,ke�

�ei�El
m−Ek

m�t
ke�m�B��lem�

�
lem�A�ke�m� + ei�Ek
m−El

m�t
lem��B�ke�m�

�
ke�m�A�lem�	 ,

GAB
iii = − i��t� �

m=m0+1

N−1

�
lem,ke�

�ei�Ek
m−El

m�t
lem�B��ke�m�

�
ke�m�A�lem� + ei�El
m−Ek

m�t
ke�m��B�lem�

�
lem�A�ke�m�	 ,

where the double sum over m ,m� �coming from two appli-
cations of Eq. �C1�	 is decomposed into contributions m�
=m �first term�, m��m �second term�, and m��m �third
term�. In the last two terms, use has also been made of Eq.
�C4�. In the time evolution eiHt�pem�, p= �k , l�, we have
made use of the NRG approximation H�Hm so that

eiHt�pem��eitEp
m
�pem�. Peters et al.34 evaluated the above ex-

pression for the Green’s function by using an approximate
density matrix �N, defined by the eliminated states of the
longest chain diagonalized, i.e.,

�N =
1

ZN�TN��l

�lN�e−�NEl
N

lN� , �C5�

where �N=1 /kBTN �or TN� is chosen appropriately30 to en-
sure that ZN�TN� is a good approximation to the partition
function of the infinite system at temperature T=TN. Note
also, that since N is the last iteration, all states in the above
expression are considered as eliminated states in order that
Eq. �C1� is satisfied. This procedure can be repeated for each
chain length m=N ,N−1, . . . ,m0+1, using a density matrix

�m =
1

Zm�Tm��l

�lm�e−�mEl
m

lm� , �C6�

to obtain shell Green’s functions G̃m��� ,m=N ,N
−1, . . . ,m0+1 defined at a corresponding set of temperatures
Tm �or �m=1 /kBTm� �for clarity we henceforth omit the sub-

script AB for GAB�. Since these shell Green’s functions, G̃m,
contain only excitations of order the characteristic scale, �m,
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FIG. 12. �Color online� Temperature dependence of, �a�, the
normalized electrical conductance, G /G0, �b�, the thermopower, S,
and, �c�, the normalized thermal conductance, Ke /G0, multiplied by
a factor 102 for clarity of presentation, as a function of T /�, in the
weakly correlated regime U /�=1 and a range of dimensionless gate
voltages, vg= ��d+U /2� /�. The range of vg is indicated in the top
panel and the increment used was 0.25. Arrows indicate the evolu-
tion of the transport quantities with increasing vg.
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of Hm, or larger, the Green’s function G̃m��� can only be
evaluated at frequencies ��Tm. Information at ��Tm is not
available. This restriction is overcome by the FDM approach
that we now describe.

Weichselbaum and von Delft33 evaluated the above
Green’s function by using the FDM of the system made up of
the complete set of eliminated states from all iterations m
=m0+1 , . . . ,N. Specifically, the FDM is defined by

� = �
m=m0+1

N

�
le

�lem�
e−�El

m

Z�T�

lem� , �C7�

where Z�T� is the partition function made up from the com-
plete spectrum, i.e., it contains all eliminated states from all
Hm ,m=m0+1 , . . . ,N. Consequently, evaluating the Green’s
functions by using the above FDM, allows an arbitrary tem-
perature T to be used for all frequencies �, and, in particular,
allows accurate calculations to be carried out at ��T.

Consider the following density matrix for the mth shell
�defined, however, in the Hilbert space of HN�:

�̃m = �
le

�lem�
e−�El

m

Z̃m


lem� . �C8�

Normalization, Tr��̃m	=1, implies

1 = �
l

e−�El
m

Z̃m

4N−m = 4N−mZm

Z̃m

, �C9�

where Zm=�le
−�El

m
. Then the FDM can be written as a sum

of weighted density matrices for shells m=m0+1 , . . . ,N,

� = �
m=m0+1

N

wm�̃m, �C10�

wm = 4N−mZm

Z
; �

m=m0+1

N

wm = 1. �C11�

The calculation of the weights wm is outlined in the next
subsection. Substituting �=�m�wm��̃m� into the above Leh-
mann representation for G�t� and Fourier transforming yields
G���=�m�wm��Gm�

i ���+Gm�
ii ���+Gm�

iii ���	. The first term,
Gm�

i , is easily evaluated by using the orthonormality of the
eliminated states 
l�e�m� � lem�=ll�ee�mm�, orthonormality
of environment degrees of freedom in 
lem�A�l�e�m��
=ee�All�

m�, with All�
m�= 
lm��A�l�m�� and the trace over the N

−m� environment degrees of freedom in

1

Z̃m�

�
e

=
4N−m�

Z̃m�

=
1

Zm�

to obtain �for m�=m0+1 , . . . ,N�

Gm�
i ��� =

1

Zm�
�
ll�

All�
m�Bl�l

m� �e−�El
m�

+ e−�E
l�
m�

�

� + El
m� − El�

m� + i
.

The second term, Gm�
ii , is also easily evaluated and results for

m�=m0+1 , . . . ,N−1 �the Nth term vanishes, as all states are

counted as eliminated states at this iteration�,

Gm�
ii ��� =

1

Zm�
�
lk

Alk
m�Bkl

m� e−�El
m�

� + El
m� − Ek

m� + i

+
1

Zm�
�
kl

Akl
m�Blk

m� e−�El
m�

� + Ek
m� − El

m� + i
.

The third term, Gm�
iii , takes the form

Gm�
iii ��� = �

lek

Alk
m


kem��̃m�B�lem�

� + El
m − Ek

m + i
+ �

kle

Akl
m


lem�B�̃m��kem�

� + Ek
m − El

m + i
.

Inserting 1=1m
+ +1m

− between �̃m� and B in 
kem��̃m�B�lem�
and between B and �̃m� in 
lem�B�̃m��kem� gives


kem��̃m�B�lem� = 
kem�1m
+ �̃m�B�lem� + 
kem�1m

− �̃m�B�lem�

and


lem�B�̃m��kem� = 
lem�B1m
+ �̃m��kem� + 
lem�B1m

− �̃m��kem�

In the last subsection, we show that the second terms in the
above expressions vanish, i.e.,


kem�1m
− �̃m�B�lem� = 0, �C12�


lem�B1m
− �̃m��kem� = 0. �C13�

On using 1m
+ =�k�e��k�e�m�
k�e�m� from Eq. �C4� the terms

involving 1m
+ are evaluated as


kem�1m
+ �̃m�B�lem� = �

k�e�


kem��̃m��k�e�m�
k�e�m�B�lem�

= �
k�


kem��̃m��k�em�
k�em�B�lem�

= �
k�


kem��̃m��k�em�Bk�l
m ,


lem�B1m
+ �̃m��kem� = �

k�e�


lem�B�k�e�m�
k�e�m��̃m��kem�

= �
k�


lem�B�k�em�
k�em��̃m��kem�

= �
k�

Blk�
m 
k�em��̃m��kem� .

Note that these expressions are finite only for m��m. Using
the definition of the reduced density matrix,36

�red
m�→m�k,k�� = Tre�
kem��̃m��k�em�	 ,

we arrive at the following expression for Gm�
iii ���:
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Gm�
iii ��� = �

m=m0+1

m�−1

�
lkk�

Alk
m

�red
m�→m�k,k��Bk�l

m

� + El
m − Ek

m + i

+ �
m=m0+1

m�−1

�
lkk�

Akl
m

�red
m�→m�k�,k�Blk�

m

� + Ek
m − El

m + i
.

Hence, the final expression for G���=�m�=m0+1
N wm��Gm�

i ���
+Gm�

ii ���+Gm�
iii ���� is given by

G��� = �
m�=m0+1

N wm�

Zm�
�
ll�

All�
m�Bl�l

m� �e−�El
m�

+ e−�E
l�
m�

�

� + El
m� − El�

m� + i

+ �
m�=m0+1

N−1 wm�

Zm�
�
lk

Alk
m�Bkl

m� e−�El
m�

� + El
m� − Ek

m� + i

+ �
m�=m0+1

N−1 wm�

Zm�
�
kl

Akl
m�Blk

m� e−�El
m�

� + Ek
m� − El

m� + i

+ �
m=m0+1

N−1

�
lkk�

Alk
m

Rred
m �k,k��Bk�l

m

� + El
m − Ek

m + i

+ �
m=m0+1

N−1

�
kk�l

Akl
m

Rred
m �k�,k�Blk�

m

� + Ek
m − El

m + i
,

where in the last two terms, we rearranged the summations
over m� and m and introduced the full reduced density ma-
trix,

Rred
m �k,k�� = �

m�=m+1

N

wm��red
m�→m�k,k�� .

Note that the meaning of this quantity is completely analo-
gous to the reduced density matrix introduced by Hofstetter
in Ref. 36 except that one obtains reduced density matrices at
iteration m by eliminating environment degrees of freedom
e=em+1em+2 . . .eN from the FDM �Eq. �C7�	 instead of the
density matrix for iteration N. In addition, the former is built
from the complete set of eliminated states, as opposed to the
retained states of iteration N in the approach of Ref. 36. The
above expression for G��� is identical to that in Ref. 33. We
have checked that the sum rule for the spectral function
A	�� ,T�=− 1

� Im�GAB���	,


−�

+�

A	��,T�d� = 1

is satisfied exactly �to machine precision� when using the
discrete �unbroadened� form of the spectral function as in
Ref. 33.

1. Calculation of weights wm

The expression for wm in Eq. �C11� involves Z which
contains eigenvalues from all iterations m�=m0+1 , . . . ,N. In
evaluating these expressions, one should therefore use the

absolute energies for the El
m. Since, in practice, the iterative

diagonalization of the Hamiltonian Hm involves subtraction
of ground-state energies and rescaling at each m �see Ref.
30�, one has to keep track of the subtracted ground-state
energies and return to the actual physical energies relative to
a common absolute energy reference in evaluating wm and Z.
We take this absolute energy reference to be the ground-state
energy of the last Wilson iteration N. Thus, if EGS

m is the true
ground-state energy of Hm, we use El

m→El
m+EGS

m and Zm

→e−�EGS
m

Zm in evaluating wm /Zm and Z,

wm

Zm
=

4N−me−�EGS
m

�m�=m0+1

N
4N−m�e−�EGS

m�
Zm�

,

Z = �
m�=m0+1

N

4N−m�e−�EGS
m�

Zm�.

2. Proof of Eqs. (C12) and (C13)

Using the expression for �̃m�, we easily find that

1m
− �̃m� = �

m�=m0+1

m

�
le

�lem��
lem��

� �
l�e�

�l�e�m��
e−�E

l�
m�

Z̃m�


l�e�m��

= �
m�=m0+1

m

m�m��
le

�lem��
e−�E

l�
m�

Z̃m�


lem��

= ��̃m� if m� � m;

0 if m� � m .
� �C14�

Hence 
kem�1m
− �̃m�B�lem� in Eq. �C12� involves matrix ele-

ments of the form 
kem � l�e�m�� for m��m, which vanish,
since all retained state at iteration m have no overlap with
eliminated states at iterations m��m �i.e., eliminated states
of previous iterations are not used to obtain retained states of
later iterations�. The same arguments can be used to prove
Eq. �C13�.

APPENDIX D: THERMAL CONDUCTANCE AND
THERMOPOWER OF QUANTUM DOTS

For completeness, we outline here the derivation of ther-
moelectric transport through a strongly interacting quantum
dot.21,22 The electrical, IL, and heat current, IL

Q, from the left
lead to the quantum dot can be expressed in terms of the
particle number NL=�k	cLk	

† cLk	 and energy HL
=�k	
Lk	cLk	

† cLk	 of the left lead, via

IL = − eṄL = −
e

i�
�NL,H	 , �D1�
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IL
Q = ḢL − �LṄL =

1

i�
�HL − �LNL,H	 , �D2�

where H is the Hamiltonian �1�. In terms of the lesser
Green’s function’s Gd	,kL	

� �t , t��= i
ckL	
† �t��d	�t�� and

GkL	,d	
� �t , t��= i
d	

†�t��ckL	�t��=−�Gd	,kL	
� ��, the above cur-

rents are given by

IL =
2e

�
Re��

k	

tLGd	,kL	
� �t,t�� , �D3�

IL
Q = −

2

�
Re��

k	

tL��Lk	 − �L�Gd	,kL	
� �t,t�� . �D4�

The lesser Green’s function Gd	,kL	
� �t , t�� can be expressed

via equations of motion solely in terms of Green’s functions
of the dot and the noninteracting Green’s function for the left
lead. After some lengthy algebra,22,40 one finds the following
expressions for the currents in terms of the retarded, Gd	

r

=Gd	��+ i�, advanced, Gd	
a =Gd	��− i� and lesser Green’s

function, Gd	
� ��� of the dot,

IL =
ie

�
�
	
 d��̃L��Gd	

� ��� + fL����Gd	
r − Gd	

a ��	 , �D5�

IL
Q = −

i

�
�
	
 d��� − �L��̃L�Gd	

� ��� + fL����Gd	
r − Gd	

a �	 ,

�D6�

where fL���= �1+e−��−�L�/�kBTL��−1 is the Fermi function of

the left lead and �̃L=�NFtL
2 is the hybridization strength of

the dot to the left lead as defined in Sec. II. By using current
conservation IL=−IR, one can eliminate the lesser Green’s
function from the above expressions to arrive at the final
expressions used in this paper,

IL =
e

�
�
	
 d��fL − fR�Td	��� , �D7�

IL
Q = −

i

�
�
	
 d��� − �L��fL − fR�Td	��� . �D8�

The quantity Td	��� acts as a transmission function and is
given by

Td	��� = 2i
�̃L�̃R

�̃L + �̃R

�Gd	
r − Gd	

a � . �D9�

The electric and heat currents are expanded to linear order in
T=TL−TR and V=VL−VR,

� IL

IL
Q � = �L11 L12

L21 L22
��V

T
� , �D10�

defining, thereby, the transport coefficients Li,j , i , j=1,2. In
terms of the latter, the transport properties are given by

G�T� = lim
V→0

IL/V�T=0 = L11, �D11�

S�T� = − lim
T→0

V/T�IL=0 = L12/L11, �D12�

Ke�T� = − lim
T→0

IQ/T�IL=0 = L12L21/L11 − L22. �D13�

Finally, the Lij are simply expressed in terms of the follow-
ing transport integrals:

In�T� =
2

h
 d

nT�
��−

� f

��
� , �D14�

via L11=e2I0 ,L21=−eI1 /T and L22= I2 /T. Substituting these
values for Lij into Eqs. �D11�–�D13� results in the expres-
sions �4�–�6� given in the text.
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